高温导热油厂家-西藏高温导热油价格

tamoadmin 2024-09-08

1.石锅的菜品特色

2.下雪的好处

3.石灰岩简介及详细资料

4.地心跟地球表面的进口在哪?请高人回答,由衷感谢(奉上我所有财富)

5.金刚石有哪些特征

石锅的菜品特色

高温导热油厂家-西藏高温导热油价格

峡石

取于长江三峡边一峡口处石头加工而成,此锅硬而薄,遇热特别快且煮食、熬汤时不会破裂,极度耐烧,常被当地渔夫做成石锅煮鱼。

青石

取于重庆长江边一高山峰顶处石头加工而成。这种石材最大的优点是质感强且价格比较便宜,是目前使用最多的品种。

麦饭石

麦饭石锅的全部材料就只有麦饭石,属于天然麦饭石锅。麦饭石锅--麦饭石电磁保健锅,是可以直接放在电磁炉上使用的,不粘锅,导热快。  麦饭石锅的作用:  1.麦饭石锅保鲜:菜肴炖熟后能保持色泽鲜。   2.麦饭石锅风味正:因麦饭石的奇特作用能延长贮存期增加菜肴的保鲜时间。麦饭石锅去异味:炖熟菜肴过程中麦饭石把菜肴中不纯正的气味吸附,从而达到去除异味的效果。  3.麦饭石锅补充营养:菜肴炖熟的过程中,麦饭石电火锅能溶出钾、铁、镁、锰、铅、硅、碘等矿物质及微量元素,铁增加到原来含量的十倍多,锰含量增加到原含量的50%以上。  4.麦饭石锅含天然的矿物质,微量元素,天然药性,经长期使用,可以促进人体生理代谢功能,促进血液循环,降低血液粘稠度,对肥胖症、心脑血管病,高血压,胃病,调节内分泌等,都有较好的作用  麦饭石锅的使用:  1、可以炖汤、煎鱼等、火锅。  2、土豆、地瓜、鸡蛋、割口板栗可以干烧不放水。  3、鱼、肉饼等可以不放油,而且无异味。  4、不放水可以烫波菜、豆芽等蔬菜,保持营养。  5、 家用烙水煎包、比萨饼等。

天然皂石

产自西藏墨脱县,墨脱县是雅鲁藏布江进入印度前流经我国境内的最后一个县,也是西藏东南部最为偏远的一个县 。 墨脱石甚是,在当地用钢刀削石,可以削石如泥,一旦离开墨脱,石头便坚似钢铁,墨脱石为何具有如此特性不得而知。  墨脱石锅原料为世界上稀有的天然皂石,质地绵软,石锅以灰褐色、灰巴色为主色调,形状为桶形,厚2-3厘米,规格大小不等,大锅直径大约30厘左右,中等的直径20厘米左右,小的直径10厘米左右,锅底有平底和弧形两类。墨脱石锅可耐2000℃高温,具有传热快、不粘锅、不变色等优点,汤汁香浓可口、后味醇厚、持久。常食石锅炖煮的食物对高血压、心脏病、心脑血管等疾病患者具有明显的食疗保健作用,是用来火锅、汤锅、煮饭、炖肉、煮菜的极佳器具。  由于气候原因,每年仅七八两个月才能上山制。上山前需备足两个月的食品和柴火,由于不通公路,制成后用牦牛和马驮下山,放入雅鲁藏布江江水中浸泡30天左右才能使用。石锅含有人体所需的锌、铁、钙、镁等16种微量元素,用的越久对人体越有益。

下雪的好处

1、雪有利于农作物的生长发育。雪是具有很好保温效果的物质,可以在寒冬保护植物不被冻伤,来年开春雪水融化可以为植被提供良好的供水,大自然的力量绝对不是巧合,因雪的导热本领很差,土壤表面盖上一层雪被,可以减少土壤热量的外传。

2、雨雪形成最基本的条件是大气中要有“凝结核”存在,而大气中的尘埃、煤粒、矿物质等固体杂质则是最理想的凝结核。

如果空气中水汽、温度等气象要素达到一定条件时,水汽就会在这些凝结核周围凝结成雪花。所以,雪花能大量清洗空气中的污染物质,每当一次大雪过后空气就显得格外清新。

3、城市降雪对缓解、补充城市冬季水短缺和改善、保护生态环境起着极为重要的作用。

4、用积雪及其雪水的低温性,在春夏季节进行喜冷性作物和菌类的栽培;在水产养殖业上,利用融雪水的低温性进行鱼苗繁殖、特种溪栖性鱼类的养殖;在春季,融雪水可以补充地下水的水量,从而缓解春季的干旱情况。

5、将雪库中贮存的雪,与输出的高温废水按比例混合,将积雪转化为融雪水,使其温度保持在零度左右,再次进行设备的冷却,如此循环往复。

扩展资料:

雪的形成

雪花的形状极多,而且十分美丽.如果把雪花放在放大镜下,可以发现每片雪花都是一幅极其精美的图案,连许多艺术家都赞叹不止。

雪花大都是六角形的,这是因为雪花属于六方晶系,云中雪花"胚胎"的小冰晶,主要有两种形状。一种呈六棱体状,长而细,叫柱晶,但有时它的两端是尖的,样子像一根针,叫针晶。另一种则呈六角形的薄片状,就像从六棱铅笔上切下来的薄片那样,叫片晶。

参考资料:

百度百科-雪

石灰岩简介及详细资料

岩石分类 石灰岩

石灰岩主要是在浅海的环境下形成的。石灰岩按成因可划分为粒屑石灰岩(流水搬运、沉积形成)、生物骨架石灰岩和化学、生物化学石灰岩。按结构构造可细分为竹叶状灰岩、鲕粒状灰岩、豹皮灰岩、团块状灰岩等。石灰岩的主要化学成分是CaCO3易溶蚀,故在石灰岩地区多形成石林和溶洞,称为喀斯特地形。

石灰岩是烧制石灰和水泥的主要原料,是炼铁和炼钢的熔剂。

岩石结构

石灰岩结构较为复杂,有碎屑结构和晶粒结构两种。碎屑结构多由颗粒、泥晶基质和亮晶胶结物构成。颗粒又称粒屑,主要有内碎屑、生物碎屑和鲕粒等,泥晶基质是由碳酸钙细屑或晶体组成的灰泥,质点大多小于0.05毫米,亮晶胶结物是充填于岩石颗粒之间孔隙中的化学沉淀物,是直径大于0.01毫米的方解石晶体颗粒;晶粒结构是由化学及生物化学作用沉淀而成的晶体颗粒。

结构分类

灰泥含量/%

颗粒含量/%

颗粒

品粒

生物格架

内碎屑

生物

鲕粒

团块

粪粒

Ⅰ颗粒灰泥石灰岩

Ⅰ1颗粒石灰岩

10

25

50

75

90

90

75

50

25

10

内碎屑石灰岩

生物石灰岩

鲕粒石灰岩

团块石灰岩

粪粒石灰岩

Ⅱ结晶石灰岩

Ⅰ2含灰泥颗粒

石灰岩

含灰泥内碎屑石灰岩

含灰泥生物石灰岩

含灰泥鲕粒石灰岩

含灰泥团块石灰岩

含灰泥粪粒石灰岩

Ⅰ3灰泥质颗粒石灰岩

灰泥质内碎屑石灰岩

灰泥质生物石灰岩

灰泥质鲕粒石灰岩

灰泥质团块石灰岩

灰泥质粪粒石灰岩

Ⅰ4颗粒质灰泥石灰岩

内碎屑质灰泥石灰岩

生物质灰泥石灰岩

鲕粒质灰泥石灰岩

团块质灰泥石灰岩

粪粒质泥质石灰岩

Ⅰ5含颗粒灰泥石灰岩

含内碎屑灰泥石灰岩

含生物灰泥石灰岩

含鲕粒灰泥石灰岩

含鲕粒灰泥石灰岩

含粪粒泥质石灰岩

Ⅰ6灰泥石灰岩

灰泥石灰岩

(据华东石油学院)

岩石分布

由生物化学作用生成的灰岩,常含有丰富的有机物残骸。石灰岩中一般都含有一些白云石和黏土矿物,当黏土矿物含量达25%~50%时,称为泥质岩。白云石含量达25%~50%时,称为白云质灰岩。石灰岩分布相当广泛,岩性均一,易于开加工,是一种用途很广的建筑材料。

特别是在华北及东北南部,因中奥陶世海侵达到最 *** ,普遍沉积了层厚而质纯的石灰岩,为具有工业价值的水泥原料及治金工业原料。

形成过程

石灰岩的主要成分是碳酸钙,可以溶解在含有二氧化碳的水中。一般情况下一升含二氧化碳的水,可溶解大约50毫克的碳酸钙。

石灰岩

湖海中所沉积的碳酸钙,在失去水分以后,紧压胶结起来而形成的岩石,称为石灰岩。石灰岩的矿物成分主要是方解石(占50%以上)还有一些粘土、粉砂等杂质。绝大多数石灰岩的形成与生物作用有关,生物遗体堆积而成的石灰岩有珊瑚石灰岩、介壳石灰岩,藻类石灰岩等,总称生物石灰岩。由水溶液中的碳酸钙(CaCO3)经化学沉淀而成的石灰岩,称为化学石灰岩。如普通石灰岩、矽质石灰岩等。

岩石类型

石灰岩是地壳中分布最广的矿产之一。按其沉积地区,石灰岩又分为海相沉积和陆相沉积,以前者居多;按其成因,石灰岩可分为生物沉积、化学沉积和次生三种类型;按矿石中所含成分不同,石灰岩可分为矽质石灰岩、粘土质石灰岩和白云质石灰岩三种。分布情况:中国石灰岩矿产十分丰富,作为水泥、溶剂和化工用的石灰岩矿床已达八百余处。产地遍布全国,各省、市自治区均可在工业区附近就地取材。

石灰岩

石灰岩矿产在每个地质时代都有沉积,各个地质构造发展阶段都有分布,但质量好,规模大的石灰岩矿床往往赋存于一定的层位中。以水泥用石灰岩为例,东北、华北地区的中奥陶系马家沟组石灰岩是极其重要的层位,中南、华东、西南地区多用石炭、二叠、三叠系石灰岩,西北、西藏地区一般多用志留、泥盆系石灰岩,华东、西北及长江中下游的奥陶纪石灰岩也是水泥原料的重要层位。

矿石性质

1. 矿石的矿物组成石灰岩的矿物成分主要为方解石、伴有白云石、菱镁矿和其他碳酸盐矿物,还混有其他一些杂质。其中的镁呈白灰石及菱镁矿出现,氧化矽为游离状的石英,石髓及蛋白石分布在岩石内,氧化铝同氧化矽化合成矽酸铝(粘土、长石、云母);铁的化合物呈碳酸盐(菱镁矿)、硫铁矿(黄铁矿)、游离的氧化物(磁铁矿、赤铁矿)及氢氧化物(含水针铁矿)存在;此外还有海绿石,个别类型的石灰岩中还有煤、地沥青等有机质和石膏、硬石膏等硫酸盐,以及磷和钙的化合物,碱金属化合物以及锶、钡、锰、钛、氟等化合物,但含量很低。

石灰岩

2、石灰岩的性质

石灰岩具有良好的加工性、磨光性和很好的胶结性能,不溶于水,易溶于饱和硫酸,能和各种强酸发生反应并形成相应的钙盐,同时放出CO2。石灰岩煅烧至900℃以上(一般为1000~1300℃)时分解转化为石灰(CaO),放出CO2。生石灰遇水潮解,立即形成熟石灰[Ca(OH)2],熟石灰溶于水后可调浆,在空气中易硬化。

工艺特性

石灰具有导热性、坚固性、吸水性、不透气性、隔音性、磨光性、很好的胶结性能以及可加工性等优良的性能,既可直接利用原矿,也可深加工套用。

主要用途

石灰岩在冶金、建材、化工、轻工、建筑、农业及其它特殊工业部门都是重要的工业原料。随着钢铁和水泥工业的发展,石灰岩的重要性必将进一步增强。

质量标准

对石灰岩的质量要求,视用途不同而异。一般来说,冶金、化学工业和其它的特殊工业部门对石灰岩纯度的要求比建筑工业和农业高,我国除冶金工业用石灰岩制定了中华人民共和国专业标准ZBD60001-85外,其它行业均未制定国家标准或专业标准,而由各套用部门自行制定有关标准。建材工业用石灰岩产品质量要求

石灰岩

(1)水泥工业:用于水泥生产的石灰质原料,质量要求列于表7。对非晶质石灰岩,其粒度要求为30~80mm。

(2) 玻璃工业:一般来说,根据玻璃质量要求不同而选用CaO含量不同的石灰岩,但要求所选用的石灰岩为非晶质且成份稳定。

综合利用

综合利用技术方法及工艺流程我国石灰岩的特点是储量大,质量较好。因而我国较大的石灰岩矿山都用洗矿-破碎-分级方法处理石灰岩矿石,以除去地表泥土、砂石、粘性泥团对砂石的污染。对于品位较低的石灰岩或矿石性质差异大的石灰岩,国外有些国家用浮选法或光电选矿方法。如用浮选法进行石灰岩和石英与铁的分离等;用浮选法或光电选矿法进行石灰岩和白云石与菱镁矿的分离等。

开发现状

开发利用现状、存在问题及解决对策

石灰岩

石灰石用途很广,是国民经济各部门以及人民生活中必不可少的原料。主要用于:(1)在建筑工业中用来生产水泥和烧制石灰;(2)冶金工业用作熔剂;(3)化学工业中用来制碱、漂及肥料等;(4)食品工业中用作澄清剂;(5)农业中用来改良土壤;(6)在塑胶工业中用作填料;(7)在涂料工业中广泛用于做各种建筑涂料;(8)在造纸工业中用作碱性填料;(9)在橡胶工业中用作橡胶的基本填料;(10)在环保工业中用作吸附剂。

重质碳酸钙是以天然方解石、石灰石和白垩为原料,以机械粉碎达到一定细度的产品,其生产方法有干法和湿法两种,国外已获得重大进展的湿法磨粉工艺在我国仍是空白;在用石灰石生产轻质碳酸钙的工艺中,在轻钙产品的粒径与晶形控制方面与国外相比还有较大差距。为此,今后必须进一步发展石灰石的深加工工业,拓宽套用领域,加强综合利用,使产品增值,提高经济效益。

发展趋势

石灰石是冶金、建材、化工、轻工、农业等部门的重要工业原料。随着钢铁和水泥工业的发展,对石灰石的需求将进一步增加。水泥产量庞大,即每年需开用于水泥制品的石灰石要千亿吨以上。预测到2020年,全国水泥产量将达到3亿吨,这将需要开更多的石灰石作原料。此外,冶金、化工等方面对石灰石的需求也很大。因此,石灰石工业的生产发展前景广阔,为了使石灰石产品具有更大的增值效益,开拓石灰石深加工产品也是今后一个发展方向。

石凳 开发生产 石灰

石灰岩煅烧至温度1000~1300°C时,可将CaCO3中的CO2排出,制成生石灰。生石灰为白色固体,耐火难溶,遇水放热吸水生成熟石灰,石灰水饱和溶液呈碱性,易与空气中CO2反应生成CaCO3沉淀。商业上分为高钙石灰(CaO≥90%),钙质石灰(CaO≥85%),镁钙石灰(MgO≥10%)和高镁石灰(MgO≥25%)四类。

熟石灰

即氢氧化钙(消石灰)

a.分子式:Ca(OH)2

石佛

b.相对分子质量:74.08

c.性质:细腻的白色粉末。密度 2.24g/cm。加热至580°C失水成为氧化钙,在空气中吸收CO2而变为碳酸钙。溶于酸、甘油、难溶于水,不溶于醇。

d.用途:用于制药、橡胶、石油工业添加剂和软化水用等。用于石油工业添加在润滑油中,可防止结焦、油泥沉积、中和防腐。

e.主要原料及规格:石灰石(CaCO3)≥98%

f.制法及工艺流程:石灰消化法是将石灰石在煅烧窑煅烧成氧化钙后,以精选、加水消化,再经净化、干燥及过筛,得氢氧化钙产品。其反应式如下:

CaCO3=CaO+CO2(高温) CaO+H2O=Ca(OH)2

工艺流程如下:

石灰石、焦炭→焙烧→精选→加水消化→沉淀→分离→干燥→过筛→包装→氢氧化钙

氧化钙

a.分子式:CaO

b.相对分子质量:56.08

c.性质:白色无定形粉未。密度3.25~3.38g/cm。熔点2580°C。沸点2850°C。在空气中放置,吸收空气中的水和二氧化碳,生成氢氧化钙和碳酸钙。氧化钙与水作用(称为"消化")生成氢氧化钙并放出热量(生成物呈强碱性)。溶于酸、不溶于醇。

d.用途:氧化钙用于钢铁、农药、医药、非铁金属、肥料、制革、制氢氧化钙,实验室氨气的干燥和醇脱水等。

e.主要原料及规格:盐酸(HCl)35%;碳酸钙(CaCO3)98%。

f.制法及工艺流程:碳酸钙煅烧法是先将碳酸钙与盐酸反应生成氯化钙,用氨水中和、过滤、加入碳酸氢钠,反应生成碳酸钙沉淀,经脱水、干燥煅烧而得。其反应式如下:CaCO3+2HCl→CaCl2+CO2+H2O

CaCl2+2NH4OH→Ca(OH)2+2NH4Cl

Ca(OH)2+NaHCO3→CaCO3+NaOH+H2O

CaCO3→CaO+CO2

工艺流程如下,

碳酸钙加盐酸→酸解→加氨水中和→静置沉淀→过滤→加碳酸氢钠反应→碳酸钙脱水→干燥→煅烧→筛选→包装→氧化钙

轻质碳酸钙

a.分子式:CaCO3

b.相对分子质量:100.08

c.性质:白色粉未,无臭无味,密度:方解石型2.711g/cm,霞石型2.93g/cm。溶点(110大气压)1289°C。难溶于水、醇,微溶于含有铵盐或二氧化碳的水溶液,可溶于稀醋酸、稀盐酸、稀硝酸,同时放出二氧化碳,呈放热反应。

石灰岩

d.用途:主要用作橡胶、塑胶、造纸等行业的填料,也用作涂料、油墨的填料。还用于牙膏、电焊条、有机合成、冶金、玻璃、石棉、油毛毡等生产。还是工业废水的中和剂,胃与十二指肠溃疡病的制酸剂、酸中毒的解毒剂。

主要反应式:Ca(OH)2+CO2→CaCO3+H2O

生产厂家:四川重庆松山化工厂、贵州安顺玻璃化工厂、云南昆明化工厂、甘肃兰州白银区化工厂、河南焦作化工三厂、河南密县化工厂、湖南衡阳第三化工厂、上海新江化工厂、上海碳酸钙厂、江苏宜兴石灰厂、浙江吴兴菱湖化工厂、安徽安庆化工原料厂、山东张店湖田化工厂、山东淄博罗村化工厂、北京矿石材料厂、河北唐山东矿化工厂和辽宁本溪石灰化工厂等。

重质碳酸钙

(俗称单飞粉、双飞粉、三飞粉、四飞粉)

a.分子式:CaCO3

b.相对分子质量:100.08

c.性质:白色粉未,无臭、无味。露置空气中无变化,密度2.71g/cm。溶点1339°C。几乎不溶于水,在含有铵盐或三氧化二铁的水中微溶解,不溶于醇。遇稀醋酸、稀盐酸、稀硝酸发生泡沸,并溶解。加热分解为氧化钙和二氧化碳。

d.用途:按粉碎细度的不同,工业上分为四种不同规格:单飞、双飞、三飞、四飞,分别用于各工业部门。

单飞粉:用于生产无水氯化钙,是重铬酸钠生产的原料,玻璃及水泥生产的主要原料。此外,也用于建筑材料和家禽饲料等。

双飞粉:是生产无水氯化钙和玻璃等的原料、橡胶和油漆的白色填料,以及建筑材料等。

三飞粉:用作塑胶、涂料及油漆的填料。

四飞粉:用作电线绝缘层之填料、橡胶模压制品以及沥青制油毡之填料。

e.主要原料及规格:石灰石(CaCO3)≥90%

f.制法及工艺流程:粉碎法是将含CaCO3在90%以上的石灰经粉碎、分级、分离而制得的产品。工艺流程为:

石灰石→粉碎→分级→镟风分离→重质碳酸钙生产厂家

山东青岛化肥厂和上海石粉厂等。

藏品信息

中国地质博物馆藏品信息:

中国地质博物馆石灰岩藏品(一)

描述 :中国本溪桥头小黄柏峪的石灰岩(Limestone)的标本照片。灰色;粒屑结构;块状构造;主要矿物组成为方解石

收藏单位 :中国地质博物馆

中国地质博物馆石灰岩藏品(二)

描述: 中国云都的石灰岩(Limestone)的标本照片 灰色;粒屑结构;块状构造;主要矿物组成为方解石。

收藏单位: 中国地质博物馆

地心跟地球表面的进口在哪?请高人回答,由衷感谢(奉上我所有财富)

没有进口。

地球由外到内分为地壳、地幔和地核三层。

地壳是岩石圈的重要组成部分,平均厚度约17千米,其中大陆地壳厚度较大,平均为33千米。

地壳下面是地球的中间层,叫做“地幔”,厚度约2865公里,主要由致密的造岩物质构成,这是地球内部体积最大、质量最大的一层。地幔又可分成上地幔和下地幔两层。上地幔顶部存在一个地震波传播速度减慢的层(莫霍面),岩石圈(岩石圈指地壳和上层地幔顶部)以下称为软流层(Asthenosphere),推测软流层是由于放射性元素大量集中,蜕变放热,使岩石高温软化,并局部熔融造成的,很可能是岩浆(Magma)的发源地。软流层以上的地幔是岩石圈的组成部分。下地幔温度、压力和密度均增大,物质呈可塑性固态。

地核位于地球的最内部。半径约有3470 km,主要由铁、镍元素组成,高密度,平均每立方厘米重12克。温度非常高,约有4000~6000℃。地核又分为外地核和内地核两部分。外地核的物质为液态,内地核现在科学家认为是固态结构。

参考资料:

通往地心的探索之路

张少泉

在20世纪末,地球科学家可以讲出一个关于地球内部以及关于地球演化历史的绚烂多彩的故事。这个故事十分精彩,同时也是真实的。

从儒勒·凡尔纳的“地心之旅”说起

法国作家儒勒·凡尔纳在1864年创作出版了著名科幻《地心游记》,这是一部影响了几代人的科幻。《地心游记》讲的是:莱得布洛克教授和他的侄儿阿克赛在一位向导的帮助下,经由冰岛一个暂时沉寂的火山口,沿岩石中的洞穴而下,历经险阻,终于抵达地心,最终奇迹般经由一次火山爆发,从地中海那边的另一个火山口喷回到了地面。

根据今天的知识看,中的探险者们去的地方远不是地心。

地球物理学告诉我们:固体地球的平均半径长度为6371公里,而由岩石构成的表层,厚度不过几十公里。许多火山的本源就在这层岩石中间,聚集在那里的熔融物质可以来自更深的地方,但远离地球的中心。中的主人公,仅仅在这层岩石中转悠了一趟。他们看到一堆恐龙和亚特兰提斯古城,便以为游过地心了。这是因为凡尔纳当时对地心的认识,受那个时代科学发展的局限。但凡尔纳仍不失为科学幻想的先驱人物。在众人翘首仰望太空时,唯独凡尔纳把目光转向了地下。

误区:地壳包裹着岩浆,伪科学:地球空心说

在儒勒·凡尔纳的时代,地质学作为一门学科已建立起来,但对地球内部深处的了解,仍仅处于起步阶段。

地质学家根据火山喷出大量熔岩和气体的现象,建立了地球是由一团炽热的星云凝聚而成的说,设想有一种叫做“岩浆”(magama)的液态物质充满着岩石层下的地球内部。这种岩浆,被认为是以硅酸盐为主,并含有许多气体和水分的高热熔浆。按照这一说,在地球的演化过程中,外部散热快,先冷却,凝结出一个由坚硬的岩石构成的壳层。

山岳高原的隆起,是岩浆上涌推动的结果;在一些地方,岩浆突破封闭冲出,是为火山爆发;并首次将人们看得到的岩石表层,称为“地壳”(crust)。在英文中,这就是蛋壳的壳字,译成中文时,在前面加了个“地”,成为一个专有名词。这样理解地壳近乎一层薄壳,几乎是“皮”;壳下为尚未凝固的岩浆所充满,火山熔岩是地下岩浆在出口的凝固物。这种说当时就有人怀疑。后来的发现和研究结果更证明,岩浆是在一定环境中和一定的条件下才会产生的局部熔融现象。

“地球空心说”过去风行过。如今仍有市场。地球是中空的吗?关于地球内部状况,人们的认知确实进展不如对宇宙的认知进展快,还有许多未解之谜。这也给不科学或反科学的奇谈怪论留下藏身之地。其中之一就是“地球空心说”。

地球内部难以直接观察,但是从其他途径可以了解它。譬如可以用物理学的方法计算出来整个固体地球的体积和质量,从而求得它的平均密度。使地球内部是空的,那么固体地球的平均密度应低于地面岩石的密度。早在1799年,出生于法国的英国科学家卡文迪什(1731-1810)应用万有引力定律,和他制作出来的扭秤,就已测出地球的平均密度为水的5.48倍,超过岩石的密度。他还提出,这个密度随着深度增加而增加,地球中心的密度最大,而并没有什么空心一说。

卡文迪什的实验和理论,后来为许多人的重复测定所证实,并取得更精确的数据。现代测定的地球平均密度为5.517克/立方厘米;上部岩石圈的平均密度为2.65克/立方厘米。

显然,“地球空心说”不是什么科学说,只是在科幻**和中用来虚构离奇故事的“背景”。至于散布什么外星人或恐怖分子就住在空心的地球的里面,并在那里控制着地球,更是蛊惑人心的邪说。

一个探测地心的最新的科学设想

科学幻想影响到科学家,也是人们始料不及的。

太空探测已经引不起世人的兴趣,那何不用核弹炸开一条路到地心去探险呢?这类似于科幻的情节,出现在权威科学期刊英国《自然》杂志的一篇文章中。这就是美国加州理工学院的达维史蒂文森(Daid Stevenson)在今年5月15日出版的《自然》杂志上提出一种探测地心的构想。

他的构想是:先在地表引发威力达数百万吨**爆炸力的核爆或类似地震的高能,挖掘长与深各300米,但宽度只有一米的壕沟,然后注入数十万吨的炽红熔铁,熔铁像巨大的刀锋切开地球的岩层,让探测器随着熔流而下,同时“熔铁刀”顶上的岩层冷却封合起来。史蒂文森表示,这个过程可比拟成火山作用,只是过程相反。在这个构想中,向裂缝中注入的铁水至少要灌10万吨,大约相当于今天全世界1小时的铁产量。使用熔铁来做“切刀”,原因是铁便宜又充裕;另外,熔铁不会与富含铁矿的地壳、地幔岩石化合,呈熔化状态是为了减少摩擦阻力。

灌入铁水的同时,科学家会在其中放入一个葡萄柚大小的由特殊材料制成的探测器。探测器随着热的铁水逐渐渗入地球内部,大约1个星期之后能够到达地球外核附近。

这个方案尽管听上去相当美妙,但是仍有一些难以克服的技术障碍。科学家除了要筹集到10万吨铁水和足够的——比如一颗核弹外,还面临着相当大的挑战,比如应该用什么材料(如钻石)制造这样一种耐高温高压的探测器。史蒂文森表示,因为高热,不能使用传统的微电子器材,唯有钻石外壳才堪用。地心探测器将携带各类探头,以测量温度、探测有无其他元素存在以及电磁活动。史蒂文森表示,地底下除开铁之外,是否有硫、硅、氢、氧等元素,目前科学界并不清楚。史蒂文森相信探测地心一样会带来前所未有的知识,或许能解释地球电磁场的产生方式及某些地震、火山的源头。

当然,地心探测可能有很大危险,譬如制造出新的火山,或者引发地震,然而这些风险可经由详细研究而减到最低。

一些称赞这种大胆设想的科学家也质疑其可行性。有人提出,主要仰赖重力来打穿地壳、地幔,下沉的过程当中,裂口的四壁会生热、融化,探测过程也许得耗时数千年。其理由是尽管铁水的总重量十分巨大,但在强大地核压力的作用下,裂缝会在铁水流下之后被强大的压力闭合。同时,人类想利用地震波来取得信息或测量出温度等参数,实在难以实现,因为这么一个小小的探测器,怎么能够形成强大的地震波,将有关数据传回地面呢?

毕竟这是一个建立在现代科学和技术基础上的大胆构思,仍可以称为科学设想。

照亮地心的明灯和地心旅行的信使

要实现探测地心的设想,首先要了解从地面到地心的介质状态和结构。这就要先派个“探路者”。这个“探路者”就是地震波。早在我国东汉时期,就有张衡发明的地动仪记录远在数百公里之外的陇西地震。那时人们只能从龙口吐珠的方向得知地震发生地的方向,还不可能得到震动发生时大量的地下结构信息。直到十九世纪末和二十世纪初,能记录地震波的地震仪器,才为英国、德国和俄国的科学家发明并用于观测。

科学家发现,地震时人们感到的震动,是从震源传出的弹性波在地壳中传播的表现,并识别出在这地震波中包含着两种波动:一种是质点震动方向与传播方向一致的纵波,一种是质点震动方向与传播方向垂直的横波。横波传播时,要求传播它的介质改变形状,所以它在气体和液体介质中不能通过,而只能在固体中传播;纵波则没有这种要求,在固体、气体和液体中都能传播。

18年,德国地球物理学家维歇尔特(Wiechert·JohannEmile,1861-1928)通过理论计算,推测地球只是核心部分为液态,其成分主要是铁,而在这个液态的地核之外,全为岩石质的固体物质所包围,其厚度可达1500公里。他把这部分命名为Mantle。开始有的中国地学家将其译为“地肉”,后来又有人提出应译为地幔。1906年英国地质学家、地震学家奥尔德姆(Oldha·RichardDixon,1858-1938)以地震观测得到的结果,证实了这个推测,但界面所在的深度与维歇尔特相差很大。1913年,时在德国后来移居美国的地球物理学家古登堡(Gutenberg·Beno1889-1960)经过反复研究,确定地核与地幔的分界面在地下2900公里深处。以后的研究未再有大的修改,这个分界面被命名为古登堡面。

1935年,丹麦女地震学家雷曼对地震波中微弱信号做了研究,认为在液态的地核中,还存在着一个固态的内核。1954年,澳大利亚的地震学家布伦对地球密度和弹性系数分布做了研究,进一步证明这个设的可能。

于是我们得知,地球内部大部分是固体。仅地幔就要占去固体地球体积的82.3%。这样一来,地壳似乎失去了提出时的意义。人们也自然会想到,地壳和地幔既然都是岩石或岩石质的物质,它们之间的界限如何划分呢?

1909年,南斯拉夫地震学家莫霍洛维奇研究了发生在库尔帕河谷一带的地震记录,发现纵波在地下50公里界面上速度突然增大。进一步的研究得知,这种在地下几十公里深处地震波的变化,是全球性的现象,不过深度不一。陆地下面通常为三、四十公里,海底下面一般不到十公里。此界面显示明显,被命名为莫霍洛维奇面,简称莫霍面。现在一般都以莫霍面作地壳与地幔之间的分界。

莫霍面以上的地壳,是以硅酸盐矿物为主体组合而成的岩石构成的,上层的岩石含铝较多,花岗岩是它们的代表;下层含镁较多,玄武岩是它们的代表。这种化学成分差异,也表现为比重、颜色等物理性质的不同,花岗岩色浅,重量较玄武岩轻;玄武岩色深,中文译为玄武。由于存在差异,地震波在通过时速度也就不同,在从花岗岩层进到玄武岩层时,便会在地震记录上表现出来。1923年,奥地利地震学家康拉德发现了这个界面,科学界将这个界面命名为康拉德面。

莫霍面以下,和地壳紧贴在一起的地幔上部边缘,也是以硅酸盐矿物为主体组合而成的岩石构成的,只是含镁更多了,比重更大,橄榄岩是其代表,它和地壳中的岩石一样坚硬。

再往深处去,是不是也是这种情况呢?分析地震波带来的情报,经过几十年的积累,科学家们确定在地幔上部100公里上下一带,存在着一个地震波传播速度减缓的“低速带”,对此现象的解释是这里的岩石虽仍是是固体,但具有塑性,即可以改变形状而不破裂,这一层被称为“软流层”。

因此,分布在地幔上部边缘一带的岩石,其厚度也有限,现在人们常把它和上面的地壳合起来称为岩石层,也有人将地壳作为岩石层的同义语。软流层的厚度也是有限的,其边界还不那么清晰和确定。软流层里面又是刚硬的岩石。

关于地核尤其是内核的分析探索,近年来得到重要进展。中国学者宋晓东与美国同事合作,利用地核穿透波发现内核相对于外核和整个地球在旋转。其运动速度在地面的投影是板块运动的几十倍。这一结果对于解释地球电磁场成因和变化有重要意义。

科学钻探:联合给地球打洞

地震波可以穿透地心,可以获得地球的精细结构,但是所有有关地球密度、温度、组成的结论都是间接从地震波的波速计算得出的。要获得直接证据,必须从地下取岩样,也就是说,需要进行科学钻探。同时,通过钻探工程实践,也可以在地面划出“裂缝”将探测器送入地心。

科学钻探始于20世纪60年代美国提出的“深海钻探”(DSDP),它与“人类登月”被誉为人类在20世纪60年代的两大壮举。1985年1月,美、英、法、德等国拉开了“大洋钻探”(ODP)的序幕。1995年,德国与美国自然科学基金会(N)签署了合作备忘录,决定成立ICDP。中国也在1995年经院批准后,加入了国际深海钻探组织(ICDP)。1996年,中国与美国、德国正式成为ICDP的三个理事国。

中国钻探工程举世瞩目,是目前国际大陆钻探组织资助金额最高的项目之一,也是口科学深钻。钻孔位置的选择在江苏北部东海县毛北镇,因为那里处于世界上规模最大的超高压变质带上。

所谓超高压变质带,是指数亿年前由于地壳运动,原本处于地表的岩层向下俯冲到地幔深处,在高温高压的作用下变质,然后短时间内从地底重回地面。这种特殊岩层的发现,被公认是继板块学说提出以来,地球科学研究领域取得的重大突破性进展之一。我国将用3年时间打出这口5000米深的科研井。

由深部钻探技术和地球物理遥测技术构成的科学钻探工程被誉为“伸入地球内部的望远镜”。大陆科学钻探工程对人类认识自然、探索未知领域方面的重要意义并不逊于载人航天,是当代地球科学具有划时代意义的系统工程。

金刚石有哪些特征

金刚石的几种特性金刚石是自然元素类矿物的典型代表,化学成分是碳。金刚石是自然界最硬的物质,硬度10,绝对硬度为石英的1000倍,刚玉的150倍。承压力最大,平均每平方毫米可承受10吨压力。抗磨性最强,但性脆,不耐摔打。金刚石有较强的折光率,呈标准的金刚光泽,经白光照射,立即可被分散成明亮刺眼的单色光折射出来;金刚石有稳定的化学性质,耐强酸强碱腐蚀,熔点较高;金刚石,白天经曝光照射后,晚上能自动发光,历来被称为“夜明珠”。 钻石的颜色钻石的颜色对它质量的评价有极大的影响。由于无色中带“黄”是最常见的减等色素,故目前鉴别钻石的颜色等级(简称色级)时,就以含**素的多少来分颜色等级(简称色级)时,就以含**素的多少来分颜色等级。色级以百分区别。100色亦称“十足色”,就是纯正的“净水钻”;95色以上都是仅有极微的**,在不与纯正钻石相比的情况下,外行人看不出**;90色-95色之间亦仅带极微的**,略可感觉到色素存在;85色指有较明显的淡**;80色指有明显的淡**;75色指有显著**。75色以下的钻石,一般就很少作装饰物了。有些特殊颜色的钻石,如纯正的艳红,称为“红钻”,艳紫色称为“紫钻”,深蓝称为“蓝钻”,鲜绿称为“绿钻”,蛋黄或深(金)黄称为“金钻”,乌黑称为“黑钻”等等,这些都是极难得的珍品。 两类金刚石矿床 1、原生金刚石矿床:此类矿床都产在金铂利岩中。金铂利岩是一种碱质超基性火山颈岩石,斑状结构。岩石的主要矿物成分镁橄榄石、普通辉石、黑云母、钛铁矿、磷灰石、镁铝榴石、黑色镁钛铁矿铬透辉石,及部分后期热液或自变质次生矿物,伴生斑晶主要为橄榄石、金云母、石榴石钛铁矿等。金刚石以八面体积和菱形十二面体最常见。 2、砂矿金刚石矿床:是指含刚石的金铂利岩经过风化剥蚀而成的残(坡)积砂矿、冲积(河成)砂矿、海成砂矿、冰川漂砾砂矿等。其中以河成冲积砂矿最为重要。如非洲许多国家和我国的湖南、山东、江苏、辽宁等现代河流水系和古河谷阶地中都有重要的金刚石砂矿。 金刚石的重量分级和价格金刚石按每颗不同重量来分级。一般把0.01-0.24克拉的钻石,叫小钻;把0.25-0.99克拉的钻石,中中钻;大于1克拉的钻石叫大钻。大于100克拉的称特大钻石。在国际市场上,不同重量的钻石,每克拉的价格是不同的,钻石愈大价格愈高。一般的计算公式是: N(钻石价格)=M/2×(M+2)×K 式中M为钻石重量(克拉);K为一克拉的市价基数。但是,现在世界市场上钻石的定价完全操纵在钻石托拉斯手中,近年来,他们常用的公式是: N(钻石价格)=M2×K 这样,不同重量的钻石,价格差距就大多了。 金刚石产地的变迁 在十八世纪四十年代以前,金刚石的产地主要是印度。曾在这里到不少世界著名的大特大金刚石。如“莫卧大帝”重793克拉、“皮特”重410克拉等。以后金刚石的产地开始转移到巴西,这里也到不少世界著名的特大金刚石。如“瓦尔加斯总统”重726.6克位、“巴西黑钻”重350克拉等。到1867年,南非发现了更为丰富的金刚石和产金刚石的金伯利岩,到了更多更好的特大金刚石。如1893年到的“高贵无比”重995.2克拉、1905年到世界最大的“库里南”重3106克拉,1934年到的“琼格尔”重726克拉等。 我国的五颗特大金刚石第一颗,镶嵌在西藏日喀则扎什伦布寺内弥勒佛的眉宇间,重约390克拉,正面看足有核桃大。第二颗,是1937年深秋山东郯城罗甸邦老人拣到的,重281.25克拉,,形似淡**小雏鸡,故起名“金鸡”。1938年12月21日,被日本侵略军抢走,至今下落不明。第三颗,是17年12月21日,山东临沭县常林村魏振芳姑娘在地里拣到的,取名“常林钻石”,呈八面体和和菱形十二面体的聚形,透明,微淡**,重158.79克拉。第四颗,是1981年8月15日山东郯城陈埠一位农民拣到的,取名“陈埠一号”,重124.27克拉。第五颗,是1983年11月14日山东蒙阴金刚石矿一个姓张的临时工在大块矿石上发现的,重119.01克拉。 我国发现最早的金刚石戒指我国南京博物馆人员在象山的西晋贵族墓群七号墓中,挖掘出一个金刚石戒指,推测为公元265-316年间的殉葬品,至今已有一千七百多年的历史,为目前我国发现最早的金刚石戒指。这颗金刚石,为八面体晶形,直径一毫米以上。戒指扁圆形,直径为二点二厘米,平素无花纹,上有方形斗状孔长、宽各四毫米。现存于南京博物馆中。 金刚石的晶体形态金刚石,等轴晶系,晶体形态常为八面体、菱形十二面体、立方体及“类球形”的凸八面体、凸十二面体、凸立方体和各种聚形,偶尔见到四面体。“类球形”晶体的形成,一般被认为是晶体成长发育过程中,由于物理化学条件的不稳定,导致已晶出的个体外部,重新软化,使其晶棱、隅角部位溶蚀所造成。近年来在我国辽宁大连金刚石矿里,陆续发现七颗宝石级极为罕见的四面体金刚石,其中一颗有黄豆大小,重1.44克拉,无色透明,晶体完整,填补了我国四面体金刚石的空白。 世界最大的金刚石——“库利南” 它是1905年1月在南非的普列米尔金刚石矿场上被发现的。这块宝石后来用矿主的名字取名为“库利南”。它是一个大晶体的解理块,并非完整晶体。颜色是带纯净淡蓝色的“水火色”,质地极佳。重量为3106克拉,差不多有一个拳头那么大。此宝石后来由当时的南非当局献给英王爱德华三世。其后由荷兰阿姆斯特丹的著名工匠加工,制得九颗大钻石。最大的叫作“非洲之星”,重530.2克拉,安在英王权杖正中。“库利南第二”重317.4克拉,镶在王冠上。这九颗大钻石和其余96颗小钻全为英皇室占有。 “莱索托布朗”特大金刚石 这个重601.25克拉的“莱索托布朗”特大金刚石,是一个名叫欧内斯廷的妇女1967年于非洲南部的莱索托发现的。派三位专家保护她安全拍卖这颗特大金刚石,先是被比利时矿物收藏家尤金·塞拉菲尼以21.636万美元买去。只给这个妇女3.241万美元;几个月后尤金·塞拉菲尼又以买价的两倍价转手卖给了美国钻石商哈里·温斯顿。1967年12月哈里·温斯顿为庆贺买到这颗特大金刚石而举行招待会,并特邀了发现这颗特大金刚石的欧内斯廷及她的丈夫到美国参加这个招待会。1968年对这颗特大金刚石估价为100万美元,然后加工成为一些精美的钻石。 “光山”和“光海”金刚石 “光山”和“光海”金刚石,也是重400克拉左右、居世界第十位的特大金刚石。 “光山”和“光海”的原石,于17世纪初在印度南部下古生代地层风化的残坡积砂矿中找到,为蓝绿色。据记载,最初被用作神像的眼珠,后来被磨石两颗稀世珍宝的大宝石“光山”和“光海”,一起镶嵌在印度王的宝座上。再后,“光海”被辗转盗卖,于1773年由沙皇叶卡捷琳娜二世的情夫奥尔格夫买来送给了沙皇,从此改名为“奥尔洛夫”,装饰在沙皇的王笏上。经按新式样翻修重琢,由194.8克拉减到168克拉。“光山”在印度被英国统治者劫走,后被分为大小两颗钻石,大的重106克拉,为英皇室所有,另一颗存放在“不列颠博物馆”中。 “摄政王”特大金刚石 “摄政王”又名“皮特”,是世界第十位的特大金刚石,重400克拉,它是1701年印度的一名奴隶在矿区找到的。他把自己的腿割破,将这颗金刚石藏在绷带里,带伤逃出矿区,托一名水手为其出售,却被这个水手图财伤害了。水手把它卖给了当时的英国驻印度总督,后经工匠琢磨成一颗重136.6克拉的漂亮钻石,转卖给法国的摄政王,取名“摄政王”,现藏于法国国家博物馆里

声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。